
AVS Quantum Sci. 3, 044101 (2021); https://doi.org/10.1116/5.0065951 3, 044101

© 2021 Author(s).

Ytterbium ion trap quantum computing: The
current state-of-the-art
Cite as: AVS Quantum Sci. 3, 044101 (2021); https://doi.org/10.1116/5.0065951
Submitted: 06 August 2021 • Accepted: 01 November 2021 • Published Online: 22 November 2021

Gavin N. Nop,  Durga Paudyal and  Jonathan D. H. Smith

https://images.scitation.org/redirect.spark?MID=176720&plid=1225653&setID=418177&channelID=0&CID=414017&banID=519951235&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=f95e457f237755671894a3101b4c49ce7a26c4e4&location=
https://doi.org/10.1116/5.0065951
https://doi.org/10.1116/5.0065951
https://avs.scitation.org/author/Nop%2C+Gavin+N
https://orcid.org/0000-0002-0060-0220
https://avs.scitation.org/author/Paudyal%2C+Durga
https://orcid.org/0000-0002-2075-0744
https://avs.scitation.org/author/Smith%2C+Jonathan+D+H
https://doi.org/10.1116/5.0065951
https://avs.scitation.org/action/showCitFormats?type=show&doi=10.1116/5.0065951


Ytterbium ion trap quantum computing:
The current state-of-the-art

Cite as: AVS Quantum Sci. 3, 044101 (2021); doi: 10.1116/5.0065951
Submitted: 6 August 2021 . Accepted: 1 November 2021 .
Published Online: 22 November 2021

Gavin N. Nop,1,2 Durga Paudyal,1,3,a) and Jonathan D. H. Smith1,2

AFFILIATIONS
1Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011, USA
2Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA
3Electrical and Computer Engineering Department, Iowa State University, Ames, Iowa 50011, USA

a)Author to whom correspondence should be addressed: durga@ameslab.gov

ABSTRACT

We present an overview of contemporary quantum computing with ytterbium ion traps, placing the emphasis on industry implementations.
We provide brief, concrete descriptions of various key features, such as trap loading, electronic structure, qubit function, gates, error analysis,
and benchmarking. We focus on the underlying science and current technologies to provide readers with a holistic picture of available
techniques for using ytterbium in contemporary ion trap designs.
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I. INTRODUCTION

The history of classical computers is a progression from the first
proofs of concept, using vacuum tubes, to the eventual sophistication
of modern silicon-based architecture. Now, quantum computers are
moving from proof of concept to practical design and are at the point
of scaling to increasingly large numbers of coherent, well-connected
qubits.

Ionic quantum computers have been strong contenders for the
development of quantum computation since Cirac and Zoller demon-
strated a feasible method of applying arbitrary unitary operations to
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linear arrays of ions.1 More recently, two industry quantum computers
using ytterbium were introduced by Honeywell2 and IonQ.3 These
computers take the valence electron in the outermost S shell of the
ytterbium isotope ion 171Ybþ to encode the states of a qubit. There are
two competitive architectures, namely, modular universal scalable ion-
trap quantum computer (MUSIQC) and quantum charge-coupled
device (QCCD).4,5

Why use a rare earth element at all? The ½Xe� 4f14 6s1 electron
configuration is attractive because of its hyperfine-to-optical coupling
through the use of the P orbitals. In addition, it is reasonably simple to
implement. Several elements and isotopes are potentially available for
this configuration.

Why 171Ybþ specifically? The choice of this isotope was moti-
vated by requiring nuclear spin 1/2, observational stability, and first-
order Zeeman insensitive clock states. Radioactive isotopes might be
considered, but the isotope must be stable and prevalent enough to be
isolated from typical sources of the metal. Additionally, we require
that ionization energies be reasonable and that ionized atoms be posi-
tively charged. 171Ybþ is the only isotope satisfying these constraints.

A. Outline

In this paper, we maintain a flexible structure for the benefit of a
reader. We imagine the development of a quantum computer from
scratch, following the design and execution to the final evaluation of the
device.

We first consider the underlying physics involved in using
171Ybþ in a quantum computer, and then the architecture provided by
the configuration of the ion trap.

With the basic blueprint in mind, the ensuing section considers
details of the ion trap: 2Dmicrofabrication, trap geometry, and topology
for ion transport. Depending on the chosen configuration, this may be
more or less trivial. However, critical initial decisions, such as magnetic
field orientation and strength, will play into later design considerations.

Next, we consider the loading of ions into the ion trap. We briefly
address the ionization process for ytterbium and similar atoms. Then,
we consider the dual processes of ion initialization and readout. Thus,
we can initialize a quantum computer and get readouts to determine
coherence times.

We also examine ion transport, which is more relevant for the
Honeywell design than the IonQ design. We give several ways that
ions can be moved and manipulated, considering the implications for
coherence. Additional complications arise when scaling up beyond
simple linear ion trap designs.

Finally, we discuss qubit manipulation to implement gates. Since
it is sufficient to implement all single qubit (SQ) gates together with a
universal two qubit (TQ) gate, we first consider the more straightfor-
ward case of an SQ and then some possible TQ gates. This completes
everything necessary to perform quantum computations. This paper
then concludes with an analysis of error and performance.

We cover the MUSICQ (IonQ) and QCCD (Honeywell) archi-
tectures in parallel. To gain an understanding of either one, each
section with its corresponding introduction should be read together
with Subsections IIA, IIIA, IV, VA, and VIIIA.

The MUSIQC architecture used by IonQ and Sandia relies on a
single chain of ions that share a motional bus, in some aspects similar
to the original Cirac-Zoller proposal.3,6 Ions are arranged in a string
within a pseudo-potential well created by the trap. Initially, the ions

are loaded and cooled. They are then addressed by two lasers: a global
beam addressing all the ions simultaneously and a local beam to
address individual qubits.3 Subsections IVB, VIA, and VIII B are spe-
cific to IonQ and Sandia.

The QCCD architecture uses an ion trap with sections of densely
packed electrodes for the transport of individual ions. Once the ions
are loaded, they are initially cooled. Then, they are manipulated into
the desired configuration for a sequence of pulses to address them dur-
ing gate implementation. Rearrangement and gate application repeat
until the quantum program finishes. Advanced ion transportation is
also possible in the MUSICQ architecture, although the IonQ com-
puter does not use this during computation. The Honeywell device
cools the ytterbium qubit during the run time via sympathetic cooling
with barium without harming the qubit state.7 Subsections III B, VI B,
VIC, VID, and VIIIC are specific to Honeywell.

The error section offers a brief summary of widely used methods
of performance assessment providing benchmarks for comparison
between different quantum computers.

B. Standard notation

We establish standard notation for use throughout the paper. We
refer to the elements ytterbium and barium as Yb and Ba in either
their ionic or neutral states and, unless stated otherwise, these referen-
ces default to 171Ybþ and 138Baþ, respectively.

For trap design, we assume a standard 3D right-handed xyz coor-
dinate basis as in Fig. 1. We use x, y, and z as both variables and unit
vectors interchangeably. Thus, the z-axis is used for axial motion, and
the x-axis for transverse motion. The coordinate system is assumed to
have its origin (0, 0, 0) at the center of the linear array of ions. Due to
the symmetry of the ion traps considered, this is well-defined for the x
and z axes. For the y coordinate, we choose y¼ 0 to coincide with the
position of the ions above the trap surface. In equations with variables
which are not explicitly defined by the text (such as the first displayed
equation in Sec. III), the variables are assumed to be tunable parame-
ters with dimensions specified by the equation.

FIG. 1. A mockup of the standard coordinates used in the remainder of the paper.
Here, the z-axis is the axis of freedom for ion transport, the x-axis is the transverse
axis, uniquely defined by our assumption that all ion trap configurations are 2D, and
the y-axis is perpendicular to the ion trap surface, with the positive direction pointing
down away from the image.
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In cases where we treat both motional states and electronic states,
we use the notation jn; ei, where n is the quantum number for the
motional state and e determines the internal electronic state. The
quantum numbers for the spin will be labeled as F, and the z-projec-
tion of spin is mF. Due to the focus on ytterbium computers, j0i will
refer to 2S1=2jF ¼ 0;mF ¼ 0i and the j1i state is embedded in the
2S1=2jF ¼ 1;mF ¼ 0i state. We use a one-dimensional quadratic
approximation for the potential well containing the ions in the paper.
Thus, the motional states are identified with the natural numbers as
n ¼ 0; 1;…, and �n refers to the average value of n over many trials.
Since n is reserved for the motional states, we use the variable m to
refer to the number of qubits in a quantum computer.

For all sections from IVA2, we assume that each ion is cooled to
the Lamb-Dicke regime, where changes of more than one in any
motional quantum number are suppressed. For the precise mathemat-
ical definition, see Sec. IVA2.

II. PRELIMINARIES ON YTTERBIUM

Ytterbium is a rare earth element, with atomic number 70, empir-
ical radius 175 pm, weight 173.045 u, and first ionization energy
6.254 eV. The hyperfine gap has a 12.642 821GHz qubit frequency,9

and the first-order Zeeman insensitive clock states allow a magnetic
field to quantify the electronic states, while minimizing the effect of a
non-uniform magnetic field on the separation of the j0i and j1i states
in different locations around the geometry of the ion trap.8

The 171Ybþ qubit was constructed using methods first imple-
mented by Olmschenk et al.8 The relevant large scale electronic struc-
ture is displayed in Fig. 2. The 2S1=2 hyperfine levels encode the qubit
states. Due to the electronic shielding provided by the surrounding 4f
states, these hyperfine levels are insensitive to first order changes in
magnetic fields.

In Fig. 2, we visualize the full hyperfine structure of the relevant
states in the case of 171Ybþ, which has a nuclear spin of 1/2, leading to
well-defined hyperfine splitting. As noted earlier, the j0i state is
embedded in the ground state of the ion, while the j1i state is embed-
ded in the 2S1=2jF ¼ 1;mF ¼ 0i state. A homogeneous magnetic field

of 5G 62� 10�1 mG applied in the xþ z direction to the trap in the
Honeywell machine implements a quantization axis.7 Similarly, IonQ
maintains a magnetic field of 5.2G 62� 10�1 mG.9 The magnetic
variation here refers to the spatial variation over the length of the trap.
Using a Helmholtz coil, which has d2B

dz2 ¼ 0 at the center, allows for the
refined spatial control needed to ensure variations in the magnetic field
that are small enough not to interfere with operations on qubits.

A. Selection and loading

To load ions into the ion trap, a loading slot or vertical laser
access can be added, avoiding the possibility of contaminating the elec-
trode surfaces used to control the ions. A common method of loading
is photoionization, which allows the selection of 171Ybþ during ioniza-
tion. If, after loading and testing, any ions are found not to be of the
appropriate isotope, they are ejected, and a renewed attempt at loading
is made.

In one possible choice of wavelengths for the photo-ionization of
171Ybþ, two dichroic beams, tuned to 369.53 and 398.91 nm, illumi-
nate a neutral Yb atom emitted from a heated Yb metal. The
398.91 nm light is tuned to the S1=2 $ P1=2 transition, which is ion-
specific, allowing the selection of the 171Yb neutral atoms, and the
369.53 nm wavelength ionizes the Yb atom, as shown in Fig. 3. (As
noted in the Appendix, a similar approach was used for the barium in
the Honeywell computer.)

III. ION TRAP DESIGN AND INITIAL CONSIDERATIONS

We examine two primary aspects of ion trap design, namely, the
static configuration and ion locomotion. The IonQ devices serve as
examples for the first aspect. The second aspect involves a linear Paul
trap with a more advanced electrode configuration, allowing the rear-
rangement of ions in the gate through combination, separation, swap-
ping, and locomotion. The Honeywell device serves as our example
here.

3D Paul traps are relatively easy to fabricate. However, 2D micro-
fabrication allows for a tighter specification on the construction of the
trap. Additionally, the convenient location of the electrodes allows for
direct access to the ions by lasers above the surface with fewer con-
cerns about arranging beams to avoid interference with the electric
components. Furthermore, the 2D design allows for accurate
manufacturing with the reduced use of the necessary conventional
materials and with less electric field noise near the surfaces of the elec-
trodes, thus maintaining more faithful qubit states.

We will be considering linear Paul traps and will spend most of
our time focusing on the control of ions in the xy-plane at the center
of the trap with the radio frequency (RF) electrodes and the control
electrodes lining the trap for fine-grained control. The ions may be
trapped along the z-axis with the use of simple DC voltages. We take
V0 to represent the absolute time-average of the potential, and X as
the radial frequency of the trap. In the xy-plane, the time-dependent
potential of the basic Paul trap is written as

Vðx; y; tÞ ¼ V0

2
1þ x2 � y2

R2

� �
cosXt

(using our convention for the tunable length scale parameter R).
Earnshaw’s theorem states that a collection of point charges cannot be
held in a static equilibrium by electrostatic charges. To circumvent

FIG. 2. 171Ybþ electronic structure. The 4f orbitals provide spherical insulation of
inner shells acting as a buffer against external electronic fields.
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this, the ions are centered and trapped at the saddle point of an oscil-
lating pseudo-potential.10

In essence, a linear Paul trap is similar to a quadrupolar mass fil-
ter with two electric fields at both ends capping the trap. In a linear
trap, the radial frequency xxmust be made high enough relative to the
axial frequency xz in order to keep the ions aligned with the z-axis of
the trap.

The Mathieu equation €u þ ½aþ 2q cosXt� X2

4 u ¼ 0 describes the
motion of the ions. Here, u is the ion position. The path of an ion can
be found by considering the force F ¼ m€u. Different ionic masses lead
to different stable zones, parametrized by the dimensionless constants
q and a. The equation can be solved explicitly in simple cases. For
instance, in the case where jqj; jaj � 1, the first-order solution for the
ion is uðtÞ � A cos ðxi þ /Þ½1þ q

2 cosXt�, where x � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ q2=2

p
,

A is the amplitude and / is a phase factor dependent on initial condi-
tions. In more complex cases, the numerical calculation or Monte
Carlo methods can be used to fine tune the correct constants.

The motion of ions in a Paul trap is split into two types. The first
is the secular motion. This is the motion that results from the move-
ment of the ion, treating the containing pseudo-potential as a

quadratic well. In the above solution, this corresponds to the frequency
x and amplitude A. The second type is the motion corresponding to
the cosXt term, the motion resulting directly from the oscillating
potential, which we refer to as micromotional.11

A. 2D Paul trap

In the forthcoming discussion of microfabricated ion traps, we
note that a simple static voltage applied to electrodes at the ends of the
traps is sufficient to keep the ions trapped in the z axis. As this is used
in conjunction with the oscillating quadrupolar radial confinement
field, it does not violate Earnshaw’s theorem. For that reason, we treat
the axial containment separately and focus on the transverse contain-
ment first.

When considering the plane, the electrodes generate a field.
While physical demonstrations of the idea of a Paul trap use a rotating
paraboloid surface, in our 2D cross-section, it is sufficient to identify a
saddle point for a given static configuration of charges by the electro-
des.12 A simple example is shown in Fig. 4. In this case, two RF fre-
quency electrodes are shown in a configuration with a periodic voltage
applied. The central plate is a ground. The starred point shows a sad-
dle point in the xy-plane. Upon applying an RF frequency to the trap,
the saddle point at the star alternates, generating a pseudo-potential
capable of trapping certain masses of ions.

In a predecessor to the IonQ case, the trap’s radial frequency is
xx ¼ 3:07MHz, and the axial frequency is xy ¼ 0:27MHz, which, in
a smaller test case involving m¼ 5 ions, gives a spacing of approxi-
mately 5 lm.9

FIG. 4. A cross section diagram of a potential electrode configuration. The saddle
point is marked with a star. By using an RF voltage applied to the active electrodes,
the saddle point can be alternated, creating a pseudo-potential to trap the ions
enclosed.

FIG. 3. Sample transitions used in the photoionization of the desired ytterbium iso-
tope. Two beams of light, each corresponding to one of the transition frequencies,
illuminate a thermal stream of ions. Tuning guarantees that only 171Ybþ is ionized
and then captured in the ion trap.
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1. Laser addressment and external apparatus

A recent IonQ design is shown in Fig. 5, where a view looking
down from the positive y-axis is displayed. A global addressing beam
illuminates the ions from the positive x-direction. From the negative
x-direction, a single beam is split and modified both in frequency and
amplitude by the multi-channel acousto-optical modulator (AOM) to
implement SQs and TQs. The amplitude modulation switches individ-
ual beams on and off according to whichever pair of qubits should be
entangled. Directly above the trap is a detection apparatus to sense
individual photons, allowing for the measurement of the individual
qubits at the end of a computation.

To make ion spacing more even for motional coupling, the ions
at either end of the trap are left unused. However, as more ions are
added to the ion trap, more symmetries start to be violated. The two
primary considerations are unequal spacing and the appearance of a zigzag structure, as ions begin to form ion trap crystals, potentially

causing modes to cross in sideband addressment, significantly decreas-
ing the efficacy of gates. This causes anharmonic terms to appear, initi-
ating a frequency shift in mode addressal.13,14 IonQ makes use of
anharmonic potential to deal with this, as discussed in Sec. VIA.

B. Paul trap ion locomotion

In Sec. IIIA, we assumed a simple ion trap design. However,
finely tuned ion control is needed. IonQ could reposition ions to apply
gates more uniformly in the limit as the number of ions in the trap
increases. In the Sandia case, quasi-static electrodes are necessary to
vary the length of the potential well and ensure that the bottom is suf-
ficiently flat for optimal ion placement.15

Honeywell takes a different approach. Rather than positioning
the electrodes evenly, they choose a denser configuration where
advanced ion transport schemes are required, and a sparser configura-
tion for ion transport. Between interactions, the ions are stored in
memory regions. The electrodes then propel them through the central
region in order to implement the gates (Fig. 6). Depending on the net-
work’s topology, arbitrary pairs of qubits can be shuttled to the inter-
action region in any desired arrangement, without the need to deal
with multiple ions passing each other.

Referring to Fig. 7, specific zones are as follows:

(1) T designates auxiliary electrode blocks to maintain spacing
between ions and transport them;

(2) A designates addressal electrode blocks used for advanced qubit
operations such as transportation, gates, and storage. For trans-
portation, a denser electrode configuration is used, discussed in
Sec. VI B; and

(3) L designates the loading zone, where qubits are introduced
through the single hole.

FIG. 5. A diagram of the IonQ quantum computer from the positive y vantage. The
global and individual beams illuminate the ions to implement a variety of gates, dis-
cussed in Sec. VIII B. The ions are trapped in an ion trap perpendicular to the
illumination.

FIG. 6. A schematic from the positive y-direction of an IonQ ion trap design. Note
that only the electrodes are shown. Here, the two RF electrodes aligned with the z
axis are defined as in Sec. III A. The additional electrodes above and below x¼ 0
are used for ion positioning and placement. IonQ’s Sandia-developed High Optical
Access (HOA) trap has the electrodes inside the RF rails. Note that the ion junc-
tions are not used, and not shown.

FIG. 7. A schematic from the positive y-direction of the Honeywell trap design.
Here, electrode blocks are labeled according to their role in ion manipulation.
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A total of 196 electrodes were used. The device was configured in
a 2D arrangement with no line of sight between electrodes and ions.7

Deterministic rotation of ion pairs with the electrodes eliminates the
need for error-prone TQ logical swap gates.

Electrode shielding helps to eliminate unwanted interaction
between ions and electrodes. The entire device is cooled to 12.6K by
the use of a cold finger attached to liquid helium.7 The ions are sus-
pended 90 lm above the surface, and all addressing beams are in the
xz-plane of the trap surface. The ion trap in the Honeywell device
operates with 190V at 43.35MHz for radial containment, the ion trap
frequencies for a single Yb being 2p� 0:97 , 2p� 2:7 , and
2p� 2:8 MHz for the x-, y-, and z-axes, respectively. This additional
constraint along the axial direction forms ion crystals of Baþ and
171Ybþ. The final four-ion crystal, which is used in the TQ gates, is
8 lm long.7

Laser addressing is at the level of single ion crystals. These are
composed of either Yb–Ba–Ba–Yb or Ba–Yb–Yb–Ba for TQ traps, or
otherwise just Ba–Yb, which is taken as a primitive unit throughout
the computation.

IV. ION COOLING

The gates in ionic quantum computation are implemented by
linking the electronic states with the motional states through a modi-
fied Hamiltonian that is facilitated by optical illumination. In order to
keep the motional states from interfering with the qubit states, the
atoms must be cooled to near zero-point energy in the Lamb-Dicke
regime. The primary methods of interest are Doppler cooling and
resolved sideband cooling with the option to use stimulated Raman
transitions. Doppler cooling is applied at the initial stage to bring the
atomic temperature quickly down to the Lamb-Dicke regime, after
which resolved sideband methods are employed.

A. Theory

1. Doppler cooling

Doppler cooling in a single dimension for a trapped ion involves
the illumination of the ion along the direction of its motion by a laser
red-shifted to a chosen transition frequency. Atoms moving toward
the light source will be more likely to absorb the light and receive a
kick from the photon momentum. Emission is then in a random
direction, causing an expected decrease in total momentum for the
atom. The lowest temperature that can be achieved by this method is
�hj=4kB, the Doppler temperature. Here, j is the optical decay rate,
and kB is the Boltzmann constant.16

2. Lamb-Dicke regime

Henceforth, all calculations and explanations will assume that the
ions addressed are in the Lamb-Dicke regime g2ð2nþ 1Þ � 1 with g
as the Lamb-Dicke parameter given by g2 ¼ xR=xz , where xz is the
axial frequency and xR ¼ �hk2z=2m is the recoil frequency. Here,
kz ¼ 2p

k cos h is the projection of the light’s wavevector on the
z-direction with k the wavelength and h the angle between the z-axis
and the direction of the wavevector. We use the single degree of free-
dom approximation; note that the Lamb-Dicke regime assumption is
required along each axis.17

In the Lamb-Dicke regime, the spontaneous decay of the ion
occurs primarily at the frequency of the qubit’s internal transition
j1i � j0i. The insignificance of the coupling between motional and
electronic states renders transitions of jDnj > 1 improbable.

3. Resolved sideband cooling

The distinction between Raman sideband cooling and Doppler
cooling is the relation between the frequency x ¼ ðEjni � Ejn�1iÞ=�h
of the atom (with Ejni being the energy of the atom in motional state
jni, modeled as a simple harmonic oscillator) and the radiative line-
width c. In the case of Doppler cooling, we have c � x. For Raman
sideband cooling, we require c� x to precisely target the secular
motion of the ion. Then, if the atom has frequency Ejni=�h ¼ xtot , the
laser can be tuned to the red sideband xtot � x. The atom absorbs
photons with energy �hðxtot � xÞ and emits photons with an average
energy of �hxtot � ð�hkÞ2=2m, where k is the wavevector of the emitted
photon. Here, ð�hkÞ2=2m is the recoil energy of the atom and is derived
from p2light=2m with plight ¼ �hk. In the case that ð�hkÞ2=2m� x, this
corresponds to an expected decrease in energy of �hx ¼ ED. To accel-
erate the cooling process, stimulated Raman cooling is typically used.17

4. Resolved sideband cooling with stimulated
Raman transitions

Resolved sideband cooling with stimulated Raman transitions, or
stimulated Raman cooling, operates on the same basic principle as
resolved sideband cooling. However, in this case, a virtual state is
exploited. An ED detuning from a third state j3i is made, so that jumps
to the j3i state are suppressed as a result of the energy gap. A second
beam has approximately the same ED detuning. Together, these beams
produce an ED detuning, which couples to the motional state and
decreases the ion’s motional energy.18 This is shown in Fig. 8. Note
that Raman transitions are used substantially to implement all gates
discussed in Secs. VII and VIII.

The optical wavelength of the light allows for precise specification
of the addressing, without involving unwanted ions. Additionally, the
j1i � j0i energy gap, in this case �12 GHz, allows a uniform treat-
ment of resulting Stark shifts which may be accounted for experimen-
tally. Furthermore, due to the slight detuning of the wavevectors, a
single laser source can be modulated, allowing close control of the rela-
tive phase induced in the ion.

B. Ion chains

In an ion chain, different modes of vibration can be addressed
individually, driving ions at frequencies for each mode of vibration in
turn.19 (An example of the relative energies of these different modes is
included in Fig. 9.) Alternately, multiple vibrational modes may be
addressed simultaneously to decrease cooling times; this is the method
used in the IonQ quantum computer.20 In order to cool each mode,
the chain is cooled first with Doppler cooling, which requires no spe-
cific tuning. Following this, IonQ alternates between cooling atoms via
stimulated Raman transitions and optical pumping from j1i ! j0i.

The IonQ Raman sideband cooling protocol uses the same
355 nm lasers discussed earlier. Here, however, modulation is used to
induce a stimulated Raman transition with the j0i and j1i states of the
171Ybþ being used for the bottom states in the diagram in Fig. 8. Then,
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j3i in this case is the 2P1=2 state with sufficiently large detuning. The
surrounding electrodes are used to rotate the normal mode coordinate
about the z-axis such that only one set of transverse modes is address-
able at a given time. In this case, the ED is chosen to be the energy dif-
ference between two levels in the d-mode, namely, jnd; 0i
�jnd � 1; 1i ¼ ED, by inducing the Hamiltonian Hd ¼ Xgdj
ðrþj ad þ r�j a

†
dÞ, where gmj is the Lamb-Dicke parameter for the d-

mode and the j ion and X is the j0i $ j1i frequency. Additionally,
rþð�Þj is the raising operator for jth ion, and ad is the annihilation
operator for ions in motional state m. Then, similarly to the induced
Raman transition for sideband cooling, a length of time for illumina-
tion, s, is experimentally determined in order to induce the jnd; 0i !
jnd � 1; 1i transition.

The primary innovation in the IonQ computer is that in a given
ion chain, the gdj varies considerably. Through experimental

verification, a set of gdj that maximizes the cooling rate are chosen.
Specifically,

gij ¼ g cos
ijp

m� 1

� �
:

For each mode of vibration, there exists at least one antimode
(labeled ji) such that ji is not an antimode of any but the center of
mass mode. Then, for a given system ½1;…;m� of qubits, we have a
collection of M modes ½1;…;mþ 2�, with two additional modes in
this case corresponding to the two non-addressable ions at either end
of the ion chain. The gij can be computed, giving a matrix of values.
Each of the m ions is coupled to an individual mode i based on the
dual constraints of optimizing the gij to maximize cooling, while guar-
anteeing that each mode is cooled.

Consider a toy example with four ions. Ion 2 might strongly drive
mode 2 and moderately drive mode 1. Ion 3 might strongly drive
mode 3 and moderately drive 4. In this case, the first cooling applica-
tion would use g22 and g33, while the next two applications might use g12
and g12. Each ion uses a Raman transition to the mode with which it is
most strongly linked.

Previous single mode cooling schemes required O(m) time, scal-
ing linearly with the number of ions for each mode that needed to be
cooled. The new method is shown empirically to require O

ffiffiffiffi
m
p� �

time, namely,20

maxi cos
ijip

m� 1

� �����
����
�1

( )
p

2Xg

XM
n¼1

1ffiffiffi
n
p

 !
:

In this case, cooling is applied before a computation, as the opti-
cal pumping inevitably destroys qubit states.

C. Barium

The Honeywell device uses resolved sideband cooling. Rather
than cooling the ytterbium ion directly, the barium ion is cooled to
avoid interference with the qubit states. In order for sympathetic cool-
ing to be efficient, the masses of the ions must be similar, prohibiting
the use of lighter ions such as Beþ.21,22 This allows cooling to take
place during the run of the quantum computer via sympathetic cool-
ing. The Honeywell machine cools ions to near zero point energy
before each gate application during a computation.

Honeywell report that 493.5 nm laser light was applied to the
138Baþ ion. This would seem to indicate the use of a simple resolved
sideband cooling with � detuning. However, this method is likely to
run foul of being trapped by the metastable 2D3=2. The cooling time is
relatively long.

Stimulated Raman transitions are possibly implemented in the
Honeywell computer, being known to work well in other similar
arrangements. In the case of even Baþ ions, there is no hyperfine struc-
ture. Zeeman splitting does occur and is imposed on the ions, corrobo-
rating the need for a magnetic field to quantize the qubit.23 For initial
cooling of the 138Baþ ion, typical Doppler cooling methods are used,
as indicated in the Appendix. Here, the 6S1=2 Zeeman levels are sepa-
rated by 10.97MHz with a field of 3.919G. Light at 493.5nm resonates
with the 2S1=2 $ 6 2P1=2, while 2P1=2 $ 5 2D3=2 forms a 649.9nm
transition.

FIG. 9. Phonon modes for the transverse and axial directions. Energies are given in
xz units. The dashed line is the center of mass mode. In the current diagram, ten
ions are used (as described in Ref. 38).

FIG. 8. Here, the basic process behind a stimulated Raman transition is illustrated.
A given quantum state is illuminated by two beams simultaneously, so that the
coherence time is relatively long compared to the interactions that we consider. The
first arrow shows the first transition, which has a large ED detuning from any other
quantum state, decreasing the probability of transition to the point where it can be
neglected. The second beam is then designed to give a small ED detuning from
j0i. This creates the effect discussed in Sec. IVA 3.
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The 2P1=2 $ 2D3=2 transition is possibly illuminated to depopu-
late the 2D3=2 level. Note that the 2P1=2 $ 2D3=2 illumination scheme
is an optional repumping, which may be used in either the resolved
sideband or stimulated Raman cooling schemes.

For Doppler cooling, as in Fig. 10, the beam is taken at 493.5 nm
with no detuning. This is applied for 20ms. No data are available for
what the average motional state �n is after Doppler cooling.

The 6 2S1=2 $ 6 2P1=2 modulated laser is passed through two
AOMs, which convert the frequency by þ160MHz and �80MHz.
The resulting Raman probe beam has a Rabi frequency of Xprobe

¼ 2p� 1:07MHz with an effective Rabi frequency of 2p� 89 kHz.
The Raman rþ polarized light has a Rabi frequency of 2p
�14:9MHz. This provides a frequency difference slightly red-detuned
to the Zeeman gap and a gap from the 6 2S1=2 $ 6 2P1=2 electronic
transition of D ¼ 2p��79MHz. The values were determined exper-
imentally.23 The procedure results in the cooling of the 138Baþ ion to
�n ¼ 0:17.

V. QUBIT INITIALIZATION AND DETECTION

The 171Ybþ ions have a reasonably standard method of initializa-
tion and readout, using the hyperfine to optical coupling with S–P
transitions. To maintain fidelity, illumination of the 3D½3=2�1=2
$2D3=2 with a large-bandwidth laser reduces the possibility of meta-
stable trapping of the electron outside the desired transitions.

The 171Ybþ qubit initialization is achieved by optical pumping, as
illustrated in Fig. 11. Dotted lines denote natural lines of decay, while
solid lines denote the illuminated transitions.

In the case of optical pumping for 171Ybþ, two resonances are
used. The first is a laser tuned to the 2S1=2jF ¼ 1i$2P1=2jF ¼ 0i gap
at 369.53 nm. This beam, before illuminating the ion, is passed
through a 2.1GHz electro-optic modulator, which is switched on dur-
ing initialization to generate a positive first-order sideband resonance
with the 2S1=2jF ¼ 1i$2P1=2jF ¼ 1i transition. Once an electron is
pumped from j1i to 2P1=2, it has a 1/3 chance of falling directly to j0i.
However, it is also possible for the electron to fall to the metastable
2D3=2. To combat this, an additional beam is used to illuminate the
171Ybþ at the 2D3=2jF ¼ 2i$3D½3=2�1=2jF ¼ 1i transition. This is
accomplished by an electro-optic modulator at 3.07GHz to produce

935.2 nm light. This drives the states to 3D½3=2�1=2, which then rapidly
decay to 2S1=2. States which decay to j1i are rapidly repumped through
the cycle. A near perfect state initialization to j0i is achieved in less
than 0:5 ls.

A. Qubit readouts

The qubit is readout through similar fluorescent techniques,
shown in Fig. 12. Here, the significance of the dashed and solid lines
remains the same as in Fig. 11.

The procedure for fluorescence is similar to that used for state
initialization. Again, 369.53 nm light is tuned in resonance with the
2S1=2jF ¼ 1i$2P1=2jF ¼ 0i transition. This pumps the electrons in
j1i almost exclusively, as the transition j0i$2P1=2jF ¼ 1i is detuned
by 14.7GHz. Any electrons in 2D3=2 are then pumped and decay to
the ground state, emitting photons.

In the cyclic coupling of the j1i-state and the 2P1=2jF ¼ 0i state,
when counting the number of photons emitted as a result of detection,
there is a Poisson distribution, as a result of off-resonant coupling to
the 2P1=2jF ¼ 1i-manifold. The splitting of the 2P1=2jF ¼ 0i$2P1=2
jF ¼ 1i gap is approximately 2.1GHz. Take k0 to be the mean num-
ber of counted photons, sD to be the average detection time, g to be
the detection efficiency, i.e., the number of photons detected per num-
ber of photons emitted, and sL to be the average time of leakage from
the j1i$2P1=2jF ¼ 0i states to the j0i$2P1=2jF ¼ 1i states. Using
the Poisson distribution and setting a ¼ sDg

sLk0
, we have a probability

pðnÞ ¼ e�ð1þa=gÞk0kn0
n!

þ a=g

ð1þ a=gÞnþ1
1
n!

ðð1þa=gÞk0

0
e�yyn dy

FIG. 10. 138Baþ stimulated Raman cooling. Here, D discussed before is chosen to
be below the 2P1=2 state with an � detuning between the mj Zeeman levels in the s
state. As with the Doppler cooling, an additional beam is needed to prevent trapping
and to allow the cooling cycle to continue. Only relevant layers are shown; states
2P3=2 and 2D3=2 were excluded.

FIG. 11. 171Ybþ qubit initialization by tuning the p and s orbitals. All other levels are
for depumping. Here, solid lines represent induced transitions, while dotted lines
represent spontaneous transitions. Adapted with permission from Olmschenk et al.,
Phys. Rev. A 76, 052314 (2007). Copyright 2007 American Physical Society.
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of detecting n photons. Then, the detection probability is 1� pð0Þ
using a one-photon threshold for deciding if the qubit is in the j1i-
state, which for 171Ybþ has been calculated to be 0.9933 for
g ¼ 0:001.24

This accounts for the majority of the error. However, additional
error may result from coherent population trapping, where a photon
is coherently manipulated by the detection scheme and trapped in the
j1i-manifold. Modulation of the polarization of the light during
addressing can be used to reduce the probability of coherent manipu-
lation of the qubit to a 1/3 chance of being trapped each cycle without
photon emission. However, this merely increases the expected time of
optical pumping until a photon is detected.25 The main limitation is
aperture detection efficiency. With an aperture efficiency of 0.001, the
maximum theoretical state detection fidelity is 0.9855, while for an
aperture efficiency of 0.1, state detection fidelity can reach 0.999 85. In
practice, Noek et al. demonstrated 0.998 56 fidelity with an average
detection time of 28:1 ls.26

VI. ION TRANSPORT

A microfabricated linear ion trap with electrodes offers several
convenient features. Many quantum computers have significant issues
with cross-correlation errors between qubit gates when implementing
SQ and TQ gates simultaneously, which are not easily resolved. In the
Honeywell computer, memory qubits can be moved a significant dis-
tance away from operating TQ gates, rendering such cross-talk errors

statistically insignificant. Furthermore, qubits may be interchanged
physically, eliminating the need for a logical implementation with
swap gates.

All of the control methods discussed here maintain the ions at a
distance from the electrodes that is significantly larger than the dis-
tance between the ions themselves. This allows the surrounding appa-
ratus to remain at a higher temperature than might otherwise be
acceptable (12.6K in the Honeywell configuration).

A. Qubit string modulation

As discussed at the end of Sec. IIIA 1, IonQ uses an anharmonic
potential to achieve uniform ion spacing in the crystal in use. We pre-
sent a treatment that utilizes a feedback method to create a long equi-
distant ion string with control over potential depth and ion distance.27

The ith ion in an ion string experiences a Coulomb interaction

Ei ¼
q

4p�0

X
j 6¼i

zi � zj
jzi � zjj3

;

with the m � 1 remaining ions j. To counter-balance this interaction,
an analytic solution to the surface potential for each rectangular elec-
trode may be written as

UjðVj; x; y; zÞ ¼
Vj

2p
arctan

ðxj2 � xÞðzj2 � zÞ

y
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using ðxj1; zj1Þ and ðxj2; zj2Þ as the coordinates of the opposing electro-
des in the y¼ 0 plane.28 We can combine these potentials as
Uðx; y; zÞ ¼ ½Ujð1; x; y; zÞ�jV , where V is the vector of voltages. Then,
we can balance the equation for the ions by requiring the force of the
potential to counter the force of the individual ions on each other.
Writing this out gives the following equation:

� @Ujð1; 0; yc; zÞ
@z

����
z¼zi

" #
V ¼ �EI ;

where EI is the vector of Coulomb interactions experienced by each
ion and yc refers to the height of the electrodes about the surface trap.
This equation is subject to suitable constraints on the voltages. Setting

F ¼ ½� @Ujð1;0;yc ;zÞ
@z jz¼zi �ij and choosing a two-norm to equalize the ion

distances, we obtain the optimization problem,

argminV VTFTFV þ 2FTEVð Þ;

which may be solved quadratically.

FIG. 12. 171Ybþ qubit readout. Note the similarities with Fig. 11. Solid lines repre-
sent induced transitions, while dotted lines represent spontaneous transitions.
Adapted with permission from Olmschenk et al., Phys. Rev. A 76, 052314 (2007).
Copyright 2007 American Physical Society.
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In the solution so far, the generated electric field EI for the ions is
calculated independently of the ion positions and left constant during
the calculation. By applying a field control modification of order
FDV � DEI , where DEI denotes the desired difference in electric field
and DV denotes the amount of modification, it is possible to generate
a flat potential. At each stage, the relative ion positions are measured
using florescence to guide subsequent iterations of the feedback.27

B. Qubit transport

While adiabatic transport of qubits is possible, diabatic transport
is much faster. Adiabatic transport acquires phase dependence due to
field imhomogeneity, which can be mapped experimentally, and then
compensated in subsequent computations. However, qubits acquire a
path- and time-dependent phase based on the speed of transport. The
DC Stark shift, which can affect the internal states of the qubits, may
be ignored here due to the insulation of the electronic fields in 171Ybþ.

Theoretically, the RF field containing the ions and the field due to
the electrodes may be approximated by a particle in a quadratic poten-
tial well for ions with low motional energy. Thus, the Hamiltonian,

H ¼ p
2m
þ 1
2
mx2ðx � sðtÞÞ2;

may be used to describe the ion’s motion, with x being the harmonic
frequency of the potential well formed by the electrostatic fields. Here,
s(t) represents the center of the well as a function of time in 1D space,
and the other variables are standard.29 Replacing the wavefunction jwi
by a wavefunction jvi displaced by s(t) with an appropriate displace-
ment operator, the Schr€odinger equation becomes

i�hjvi ¼ ðH0 þ _sðtÞpÞjvi ;

whereH0 gives the untranslated harmonic oscillator.
Under the assumption that the initial state of the oscillator is the

ground state, so that jwi ¼ j0i, we can solve the equation for the
amplitude aðtÞ as

aðtÞ ¼
ffiffiffiffiffiffiffiffi
mx
2�h

r
ðsðtÞ � e�ixt

ðt
0

_sðuÞeixuduÞ;

with jwi ¼ jaðtÞi.
The goal then is to leave the particle in the ground state or near

it. This is equivalent to minimizing

aðtÞ �
ffiffiffiffiffiffiffiffi
mx
2�h

r
sðtÞ ¼

ffiffiffiffiffiffiffiffi
mx
2�h

r
e�ixt

ðt
0

_sðuÞeixudu:

By setting s(t) ¼ v for t 2 ½0; tT � and 0 otherwise, the equation can be
solved as

iv
x

1� e�ixtTð Þ
ffiffiffiffiffiffiffiffi
mx
2�h

r
;

which becomes 0 when xtT=2p is an integer. Since the solution is
oscillating, even for non-ideal motion, a simple numerical calculation
shows how the ion may easily be brought back to the ground state for
reasonably high ratios of x to the transport distance of the ion.30

In addition, the qubit acquires a local phase during transport. To
account for the phase shift, neglect the global phase

aj0i þ bjei ! aj0i þ bei/jei:

Perturbation theory, utilizing a time-independent assumption, gives

/ ¼ m2

�h

X
m6¼j0i

jhmjXj0ij
�hðxj0i � xmÞ

�
X
m6¼jei

jhmjXjeij
�hðxjei � xmÞ

 !ðT
0

€aðtÞ2dt:

This is calculated and numerically held to 0, except for gate action, by
the intermediary processor which controls the electrodes.

C. Ion separation

Separation and combination of four-ions into a pair of two-ions
and vice versa are accomplished with an octopolar electric field.
Assume that the relevant qubits are contained by an RF-field, which is
symmetric in the y, z-coordinates. Then, the goal is to use the electro-
des in the QCCD architecture that line the trap to generate a potential
field, as illustrated in Fig. 13.

Here, the ions are at 6d by assumption. First, we write the poten-
tial out in terms of its Taylor expansion

Vðx; 0; 0Þ ¼ V0 � E0x þ ax2 þ E1x
3 þ bx4:

Then, as a simplifying assumption, we work with the case in which the
electrodes are symmetric. We motivate this by noting that an asym-
metric component of the separating field would push both ions to one
side of the well. Our assumption allows us to remove the cubic term.
The assumption that there be two wells forces a < 0 and b > 0. For
E0 � 0, we realize that @V=@z ¼ 0 gives

s ¼

ffiffiffiffiffiffiffiffi
jaj
2jbj

s
:

If we assume that Vðx; 0; 0Þ is constant in time, then

�a ¼ mxx

4q
;

withxx as the frequency of the ion.
To preserve qubit coherence, it is desirable to minimize higher-

order terms in the expansion of the electric field. In order to

FIG. 13. Qubit separation potential, assumed to be symmetric. The local maximum
is increased until the ions are separated. The symmetry assumption guarantees
that a quartic order term alone achieves ion separation. Here, the potential for ion
separation is shown. The time sequence for the lines representing potential is in
the order solid, dashed, and dotted.
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accomplish this, it is convenient to space the electrodes as far from the
ions as is possible.32 Now, if a is the minimum distance from the elec-
trodes to the ions, we have a=b� a2.31 We take a¼ 0, implying that
it is possible to have an electric configuration in which the second
derivative is zero and the quartic is non-zero. Laplace’s equation gives
@2V=@y2 ¼ �@2V=@x2, implying that the field strongly repels in
some direction in the xy-plane. If an oscillating field is chosen, one
type of Paul trap design, then the effective values of a and b are
reduced. Thus, it is necessary to produce an octopole. The desired
potential field is

Vðx; y; z; tÞ � aðz2 � ðx2 þ y2Þ=2Þ þ bz4 þ Qac cosðXtÞðx2 � y2Þ:

In order to achieve the required electric field configuration, at
least six electrodes are necessary. For an order 4, symmetric 2D array,
the configuration in Fig. 14 demonstrates an appropriate method for
generating the initial octopolar moment.

D. Ion swapping

Ion swapping occurs when a string of ions rotates about an axis
orthogonal to the RF-null axis. This specific maneuver is necessary for
the transport of ions between locations as well as to maintain symmet-
ric TQ gates composed of the two different ion types,

Yb�Ba�Ba�Yb and Ba�Yb�Yb�Ba:

The Honeywell literature includes a complete description for a one-
point and a three-point turn for the ions involved. We will visit the
one-point turn in depth and merely give a brief description of the tech-
nique behind a three-point ion turn.33

The basic configuration for the ion swapping procedure is illus-
trated in Fig. 15. Note the labeling in the figure. There are three config-
urations applied to the A–D electrodes,

(1) electrode z-balance: A: þ, B: �, C: þ, D: �,
(2) electrode x-balance: A: �, B: �, C: þ, D: þ, and
(3) electrode diagonal: A: �, B: þ, C: þ, D: �.

In order to flip the qubit, first, the side voltages are relaxed, while
the endcap voltages increase, increasing the range of movement in the
zx-plane, rather than imposing linear motion.

While this happens, the primary means of controlling the direc-
tion of rotation is first applying a positive electrode diagonal, then a
negative electrode diagonal as the endcap and planar electrodes are
returned to their original states. This creates diagonal wells along the
x ¼ �z and then along the x¼ z directions, meaning that the ion
string aligns itself x¼ 0, x ¼ �z, z¼ 0, x¼ z, x¼ 0, which completes
a rotation of p. Using components of the z-balance and x-balance, a
hinge in the ion string may effectively be chosen, positioning the ion
chain in the z- and x-directions. The relative voltage signatures and
ion motions are depicted in Fig. 16.

Experiments were performed on pairs of ions. The Ba ions were
pumped to an appropriate ground state and then excited using the
technique mentioned above. The fidelity was 0.97 after 433 trials. The
fidelity of the swap had no time dependence over the interval
½1:5 ms; 20 ms�. Below this time, the fidelity dropped rapidly due to
imperfections in how the low pass filters modulated the waveform
applied to the electrodes. Heating equivalent to at most one quantum
of the motional mode was predicted.

A three-point ion turn, analogous to a three-point turn of a car,
is also proposed in Ref. 33. By pushing the ion out of the center with
increased electrode z-balance and x-balance, it is possible to avoid the
center of the apparatus where various changes may occur that are
unpredictable and hard to compute.

Honeywell clarifies that their sorting time length is of order
O(m). Any algorithm which requires that only one swap be imple-
mented at a time is bounded below by an Oðm logmÞ time. Parallel
models can implement O(m) time sorts. This indicates the benefits of
a dense electrode configuration, scaling the number of simultaneous
swaps with the number of ions. This is efficient if �m=2 TQs are
implemented after each transport cycle with classical sorting costs
being ignored. Totally connected systems with simultaneous gate
applications are faster, although, to our knowledge, no experimental
demonstration of a scalable high-fidelity simultaneous application
scheme exists.

FIG. 15. Electrode configuration for ion-swapping on the z-axis. The end cap elec-
trodes are denoted as E, midpoint electrodes are denoted as M, and the rotational
electrodes are labeled as A–D. The entire setup requires the crystallized ion string
to be centered above the AE electrode in order to complete a rotation. The other
electrodes that appear in the Honeywell architecture (Fig. 7) serve for manipulation
in the y- and x-axes (as described in Ref. 33).

FIG. 14. An example of a linear design with the necessary quartic term. Here, the
relative charges are demonstrated. These charges would occur halfway through the
separation process. The two central neutral charges might also be slightly positive.
The minimal set of relevant electrodes is shown.
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VII. SINGLE QUBIT GATES

The Honeywell machine uses separate implementations for the
X, Y, and Z qubit rotations. The X and Y qubit rotations are imple-
mented with commonly used techniques.8 A stimulated Raman transi-
tion is induced to implement the gates with copropagating waves. This
is identical to the procedure described in Sec. IVA4, although in this
case ED ¼ 0, as no change in the motional state is desired.
Additionally, induction of a phase in the transport of an ion occurs as
described in Sec. VI. IonQ does not explicitly state their methodology
here, but a similar method would work for SQ’s without the complexi-
ties due to ion transport and off-resonant cooling.

The Z rotation is achieved with a numerical phase-tracking pro-
tocol implemented on a classical computer. It uses the phase accumu-
lated during transport, differences in the magnetic field, and the AC
Stark phase to determine the transport speed.7 Qubit rotations are
restricted to p=2 increments with a resolution of p=500.

VIII. TWO QUBIT GATES

While TQ gates can be realized in various ways, modern imple-
mentations rely primarily on variations of the Mølmer–Sørenson gate.
The basic principle is similar in some ways to the stimulated transi-
tions used in Raman cooling. Here, however, a dichroic light source is
used to link the vibrational modes of two atoms. The first-order cou-
pling is significantly stronger than higher coupling modes caused by

the absorption of multiple photons. As a result, a straightforward
Hamiltonian is formed, which is used for a universal TQ gate. Bearing
in mind the similarities between different gate types, we first examine
the general notion of a Mølmer-Sørenson gate, before considering spe-
cific implementations.

A. Mølmer–Sørenson gate

Within the general trapped ion interaction scheme, Sørenson
and Mølmer proposed solutions to the problem of implementing
multi-qubit quantum gates unaffected by changes in the vibrational
modes, as long as the internal states of the ions did not stray from the
Lamb-Dicke regime.34 The vibrational modes were accessed as inter-
mediate states, but transition paths involving different modes inter-
fered destructively to eliminate the dependence on them, applying
Milburn’s method of combining Hamiltonians to the ion-based pic-
ture.34,35 Suppose that there are two given Hamiltonians H1, H2 con-
trolled by real parameters j1 and j2, respectively. Furthermore,
assume that these Hamiltonians are rapidly alternated in their applica-
tion. Then, combining the corresponding unitary matrices gives

Utot ¼ eij2H2dteij1H1dte�ij2H2dte�ij1H1dt ¼ ej1j2 H1;H2½ �dt2 þ Oðdt3Þ;

over a cycle. This realizes the Hamiltonian ij1j2½H1;H2�. Milburn
treated a sample derivation with Hamiltonians XJz and PJz, in terms of
spin operators defined on jgi and jei giving rise to the Hamiltonian
i½XJz;PJz� ¼ J2z , which is independent of both the position and
momentum operators. This implies that the evolution of the system is
independent of the spatial vibrational modes.

For general multi-qubit gates, Sørenson and Mølmer made use of
individual lasers to address each qubit, as shown in Fig. 5. However,
for TQ gates, they proposed a special scheme using detuned laser
pulses directed along the axis of the trap, though Raman transitions
are not necessary for the implementation. To improve the accuracy of
the method, given the center of mass (CM) mode frequency �, each
laser is detuned from � by a suitably large amount � to avoid interfer-
ence with other states. The “blue” laser addressing the first ion is
detuned close to the upper sideband, thus close to resonance with a
joint internal ion and vibrational excitation (Fig. 17). Write jabmi for
respective qubit states jai and jbi at CM vibrational mode jmi. The
“red” laser addressing the second ion is detuned close to the lower
sideband.

In the transitions,

jggni $ fjegnþ 1i; jgen� 1ig $ jeeni ; (1)

the intermediate states are not populated. Consider the case in which
both ions are illuminated. Then, by analyzing the Hamiltonian using a
second order expansion and perturbation theory, the Rabi frequency
~X for the transitions (1) is given by

~X
2

� �2

¼ 1

�h2
X
m

heenj
P

n Hn;0jmihmj
P

n Hn;0jggni
Ejggni þ �hxi � Em

�����
�����
2

with xi ¼ �6 � and intermediate states m. Taking jeg nþ 1i; jge n
�1i as the only intermediate states, the sum reduces to

~X ¼ ðXg�Þ2

2ð� � �Þ :

FIG. 16. A sample of electrode voltages for Fig. 15. Reading from left to right gives
the five-step time sequence of charges with the ion positions being shown along
the bottom throughout the operation for the qubit swap. The general shapes of the
AC and BD paths are piecewise convex and concave curves, respectively. If an iso-
charge surface of the electric field was chosen, it would form an elliptically dis-
tended paraboloid with the z axis as the initial major axis, rotating with time (as
described in Ref. 33).
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The �-detunings function in stimulated Raman transitions. The cou-
pling to states which are exactly matched increases exponentially,
while the coupling to unmatched states decreases. A full error analysis
is available in Ref. 36. The Rabi frequency is independent of the excita-
tions of vibrational modes of the ions, allowing the addressing of inter-
nal states alone. This determines the transition between the states
jgg ni and jee ni as depicted in Fig. 17.

B. Motion-mediated Ising gates

In order to minimize the effect of modal cross-talk on TQ opera-
tions in ion chains, the energy transitions between motional states
should be small. Gates may be linked to two types of motional modes:
axial and transverse. The axial mode is measured by the frequency of
the center of mass of the ions along the length of the ion trap, while
the transverse mode is measured by the frequency of the ion motion
perpendicular to the ion trap. The modes are observed to obey a power
law in the numberm of ions in the ion string.

An IonQ experiment gave sg 	 1=xz > m0:86=xx for the axial
mode, where xx is the transverse mode frequency and xz is the axial
mode frequency. Similarly, sg 	 xx=x2

z > m1:72=xx for the trans-
verse mode. As a result, TQ gates are chosen to be implemented in the
transverse rather than the axial direction.37,38

One of the initial benefits of coupling ion motional states directly
to the hyperfine states is the easy arbitrary linkage that is available by
selectively illuminating any chosen pair of qubits. IonQ has the maxi-
mum possible connectivity, which allows implementation of TQ gates
on arbitrary qubit pairs. However, two crucial speed limitations make
their impact. While ion chain TQ schemes have demonstrated simul-
taneous gate application, fidelity tends to be reduced. For instance, on
an IonQ device, five sequential gates had a fidelity of �0:92, while
reimplemented concurrently, the gates had fidelity of �0:88.37
Furthermore, fractional power dependency of the gate times on the

number of ions quickly decreases the speed and efficiency of larger
quantum systems.39

IonQ achieves its full connectivity with a multi-channel AOM
counterpropagating along the x-axis over the trap surface (Fig. 5). The
laser is split into two beams. One of the beams illuminates the entire
ion chain. The other is channeled into individual beams with a
3:5 lmwaist for each ion. Ions are addressed by two counterpropagat-
ing lasers: one oriented in the þx direction, the other in the �x
direction. The light sources have a frequency detuning l which is used
to generate Raman transitions.

To eliminate the total force applied, AOMs produce a bichro-
matic illumination at x0 6 l, where l � xx;xz depending on the
motional wave being coupled. Since all operations are performed in
the Lamb-Dicke regime, we may use the rotating wave approximation
UðsÞ ¼ exp½

P
i /iðsÞri

x þ i
P

i;j vi;jðsÞri
xr

j
x�: Here, ri

x is the Pauli-X
operator on the ith qubit defined relative to the phase of illuminating
beat notes. Then, /iðsÞ is the corresponding raising operator on the
mode, and vi;jðsÞ represents the entangling interaction between qubits.
A full description of these variables is given in Ref. 38.

Together with arbitrary SQs, the XX-gate UXX ¼ exp �i p
4 X

�

XÞ generates a universal gate set. It is implemented as UðsgÞ
¼ exp½ipra

xr
b
x=4� between an arbitrary pair a and b of qubits. Thus, it

is necessary to have va;bðsgÞ ¼ p=4, while all other components of the
Hamiltonian should vanish at time sg. In order to match this system of
constraints, the laser’s pulse package can be split into components that
are evenly spaced in time, and separately modulated to satisfy the
resulting system of linear equations.

Normal laser output is achieved by using semi-mirror ends on a
cavity, such that only certain frequencies of light constructively inter-
fere upon rebound. Under regular laser operation, the relative phases
of these frequencies are random and, depending on the number of res-
onant frequencies generated, can cause either a pulsing behavior or
generate an almost constant stream of light. There are several methods
to choose the different resonant frequencies of laser light. For the XX-
gate, a series of stimulated Raman transitions are created through the
simultaneous addressing by two phase-locked lasers, as depicted in
Fig. 18. The frequency and phase of the lasers are modulated by an
AOM to deliver a pack amplitude so that beats occur only when a gate
has to be implemented. The mode-locked lasers emit a rapid sequence
of frequency comb pulses, where the frequency domain representation
is non-zero at locations of the form fn ¼ f0 þ ndf .40

C. Phase-independent implementation
of the Mølmer–Sørenson gate

The phase-sensitive configuration of the two-ion
Mølmer–Sørensen gate, as used in the Honeywell device, is discussed
by Lee et al.41 The gate produces the transitions

jggi ! 1ffiffiffi
2
p ðjggi � ieið/1þ/2ÞjeeiÞ;

jgei ! 1ffiffiffi
2
p ðjgei � ijegiÞ;

jegi ! 1ffiffiffi
2
p ðjegi � ijgeiÞ;

jeei ! 1ffiffiffi
2
p ðjeei � ie�ið/1þ/2ÞjggiÞ;

(2)

FIG. 17. A first order approximation for transitions between different energy states of
the TQs in the Mølmer–Sørenson gate. The solid lines represent the blue-detuned
light, while the dotted lines represent the red-detuned light. Detuning increases the
probability that both beams act on the energy levels of the quantum system, as
noted earlier in the discussion of the role of the stimulated Raman transitions.
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with respective spin phases

/i ¼ �
1
2
ðDkredXi � D/red þ DkblueXi � D/blueÞ;

of the ions, based on the wave vector and phase differences
Dkred=blue;D/red=blue of the two red and two blue detuned beams of
light driving the stimulated Raman transitions, and Xi as the equilib-
rium position of the ith ion, using axial motional coupling. The depen-
dency is eliminated from the phase-dependent implementation by
rotating the SQs with SQ gates, before and after implementing the TQ
gate, with copropagating light sources.

Figure 19 illustrates the counteraction with the phase-dependent
implementation. Here, for / ¼ /1 þ /2, SQs USQð/Þ ¼ exp ð�i p

4
ðX cos/þ Y sin/ÞÞ conjugate the two-ion gate UMSð/Þ
¼ exp ð�i p

4 ðX sin/þ Y cos/Þ
2Þ in order to remove the phase
dependence, resulting in the unitary transformation UZZ

¼ exp �i p
4 Z 
 Z

� �
. Together with the arbitrary SQs, this gate then

generates a universal gate set.
While none of these calculations account for the Ba ions, the CM

calculations hold constant for Yb–Ba–Ba–Yb and Ba–Yb–Yb–Ba. The
ions have their symmetry maintained during the application of the
gate. As the lasers will be detuned from the Ba sidebands, there will be
little to no coupling with the Ba internal states.

IX. ERROR MEASUREMENT

Dynamic Rabi pulses to periodically rotate the qubit and correct
for long-lasting asymmetric fields are a standard method of decoupling
the computer from its environment. In the Honeywell computer,
oppositely phased pulse pairs of a global microwave field are applied

during ground-state cooling for the general suppression of memory
errors through dynamical decoupling.42 This effectively eliminates any
biased error in qubit manipulation, leaving an unbiased error that
increases in variance over time.

For an m-dimensional quantum system, quantum process
tomography may provide a theoretical characterization, measuring
output density matrices from each ofm2 pure state inputs. However, it
tends to downplay errors incurred in-state preparation and measure-
ment. Furthermore, it does not scale well as the dimensionm grows in
size. A less comprehensive but more practical characterization is
offered by the technique of randomized benchmarking, as discussed in
Sec. IXB below. The technique relies on sampling from a suitable finite
set of unitary matrices.

A. Pauli groups and Clifford groups

The group of unitary matrices consisting of all finite products of
the Pauli matrices rx;ry; rz is the (complex form of the) Pauli group
P1. The complex linear span of the Pauli group is the full set of all uni-
tary 2� 2-matrices. For a positive integer n, the (complex form of the)
Pauli group Pm is the mth tensor power P
m1 . Take the group Bm

¼ ðZ=2Þ
m of classical bit strings b ¼ b1…bk…bm of length m under

componentwise xor as a vector space over Z=2. Identify Bm with the
computational basis of C2m . Then, the (classical) phase space is
Bm � Bm with elements in canonical coordinates ðq; pÞ and symplec-
tic form Xððq; pÞ; ðq0; p0ÞÞ ¼ p � q0 þ p0 � q 2 Z=2.

The center Z of Pm is fij ¼ exp ðijp=2Þjj 2 Z=4g. The inner
automorphism group Pm=Z of Pm is the classical phase space. Thus,
Pm is a finite subgroup of the unitary group Uð2mÞ of order 22mþ2.
Each element of Pm may be written uniquely in the form ijXðqÞZðpÞ
with bit flips XðqÞjbi ¼ jqþ bi, phase flips ZðpÞjbi ¼ ð�1Þb�pjbi,
and j 2 Z=4. Then ½ijXðqÞZðpÞ; ij0Xðq0ÞZðp0Þ� ¼ ð�1Þ

Xððq;pÞ;ðq0;p0ÞÞ,
so the commutator subgroup ½Pm;Pm� is f61g.43

The real form PR
1 of P1 is the group of orthogonal matrices con-

sisting of all finite products of the matrices X ¼ rx;Z ¼ rz , and
Y ¼ iry ¼ ZX. Abstractly, it is the symmetry group D4 of the square.
Each 2� 2 unitary matrix U may be written as a complex linear com-
bination U ¼ c0I þ c1X þ c2Y þ c3Z. The real form PR

m of the Pauli
group Pm is the mth tensor power ðPR

1 Þ

m. Thus, PR

m is a finite sub-
group of the orthogonal group Oð2mÞ of order 22mþ1. In some referen-
ces, this real form is also described as a Pauli group.

FIG. 19. The gate used in the Honeywell computer to resolve phase difficulties in
the design of the Mølmer–Sørenson gate. On the left is the resultant quantum gate,
UZZ, which is formed by the conjugation of the original Mølmer–Sørenson gate by
SQ gates. This removes the phase dependence and allows the operation of the
gate based purely on the Rabi frequency.

FIG. 18. The interaction of opposing optical combs with an ion. In this example, the
three shown frequency differences between the teeth of the combs implement stim-
ulated Raman transitions, as shown in Fig. 8, with ED ¼ jndi � jnd � 1i to induce
a Mølmer–Sørenson XX-gate.
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The real form CR
n of the Clifford group Cn is the normalizer

NOð2mÞðCR
m Þ ¼ fU 2 Oð2mÞjUPR

mU
† ¼ PR

mg

in Oð2mÞ of the subgroup PR
m . It is finite of order 2

m2þmþ2ð2m � 1ÞQm
j¼1ð4j � 1Þ, only including the global phases 61. The Clifford group
Cm itself is defined to be the set of all those matrices in NUð2mÞðCmÞ
whose entries are complex numbers of the form aþ b exp ðip=2Þ with
rational numbers a, b. It is finite of order 2m

2þ2mþ3Qm
j¼1ð4j � 1Þ.

Along with the elements of Pm, it includes Hadamard gates
I2 
…
 H2 
…
 I2, CNOT-gates, and, for any Z=4-valued qua-
dratic form fðbÞ on B, local phase changes jbi ! ifðbÞjbi on each bit
string b.43

The Clifford group Cm forms a three-design, in the sense that the
statistical process of selecting random elements from Cm has mean,
variance, and skewness that agree with sampling from Uð2mÞ accord-
ing to its Haar measure.44 By the Gottesman–Knill theorem, Clifford
gates may be simulated efficiently on classical computers while afford-
ing universal quantum computation when combined with ancilla
states and measurements.45

B. Randomized benchmarking

A simple test involving qubit initialization, gate runs, and readout
is deceptive: it measures the error rate of the entire process. Of more
interest is how a quantum computer scales with deeper circuits, where
readout and initialization errors become increasingly insignificant.
The technique of randomized benchmarking uses a random computa-
tion with a simple model for qubit error. It separates gate and trans-
port errors, which occur at each computation step, from initialization
and readout errors, which do not.

Randomized benchmarking of m-dimensional quantum systems
selects a random depth-d sequence U1;…;Ud of unitary matrices
from the Clifford group Cm and adds a final unitary matrix Udþ1 such
that UdþiUd…U1 ¼ I.46,47 The Clifford gates act on an initially pre-
pared state jwi with state matrix qw, and at the end, the positive opera-
tor valued measure (POVM) element Ew is applied as a measurement.
In an errorless run of the gates in the sequence, qw ¼ jwihwj ¼ Ew.
Individual gate errors are modeled by operators K1;…;Kdþ1, so the
particular run behavior with these errors is modeled by the sequence
operator SðqÞ ¼ SqS† with S ¼ KdþiUdþiKdUd…K1U1, yielding a
fidelity or survival probability of TrðEwSðqwÞÞ.48

In practice, repeated runs are made to yield an average fidelity
Fd;w. For general error accounting, it is reasonable to assume gate-
independent and time-independent errors Kj. Fitting to the fidelity
model Fd;w ¼ Apm þ B yields a probability a ¼ p and average error
rate r ¼ ð1� pÞ � ð1� pÞ=m. The constants A and B handle errors
in-state preparation, the concluding gate Udþ1, and the final
measurement.

1. Honeywell benchmarking

The Honeywell literature provides figures showing the survival
rates 1� p. For SQ gates, orders of 1� p ¼ 10�3 are attained, and
1� p ¼ 10�2 for TQ gates, with fidelity around 3� 10�3 for state
preparation and readout.

2. IonQ benchmarking

IonQmeasured SQ gates in a configuration with 11 qubits.3 Over
500 tests of p=2 gates in sequences of length 2; 4;…; 12, the error rate
was found to be 3� 10�3. A state preparation and measurement
(SPAM) rate of 5� 10�3 was observed. This is the quantity AþB,
corresponding to measuring an ion after a single p rotation.

For TQ gates, a slightly modified approach was taken. A single
XX-gate application was used to prepare two qubits in the Bell state
1ffiffi
2
p ðj00i þ ei/j11iÞ. The probabilities of the qubits being in the respec-

tive j0i and j1i states on readout are taken as Pij for i; j ¼ 0; 1.
Measuring the Bell state directly is insufficient to determine whether
the qubits are entangled, due to the possibility of a mixed state. To
resolve this, after creation of the Bell state, a parity oscillation consist-
ing of a p=2 pulse with phase / is applied to each qubit. The final state
is expected to have probabilities U ¼ P00 þ P11 � P01 � P10. The
fidelity was measured as F ¼ 1

2 ðP00 þ P11 þ UÞ. An approximate
error rate between 1:1� 10�2 and 4:9� 10�2 was observed.

C. Quantum volume

The Honeywell device is claimed to exhibit the largest quantum
volume, 64, of any contemporary quantum computer (at the time of
writing). Thus, we will briefly discuss the concept of quantum volume,
as presented computationally in Ref. 49 on the basis of the related the-
oretical definition in Ref. 50. Roughly, the quantum volume (which
might more appropriately be called a “quantum area”) tracks the larg-
est product of depth d and width m for a random circuit that will suc-
cessfully run on the given device. The computational version proceeds
from the premise that quantum supremacy is reflected in the classical
complexity of simulating the probability distribution of outputs from a
quantum circuit, dealing with the heavy output generation problem.51

Consider a circuit of depth d, involving m qubits, defined by a
unitary operator U. Possible outputs b are bit strings of lengthm taken
from the Z=2-space Bm with zero 0 ¼ 0m; the computation is initial-
ized with j0i. The classical probability distribution of the outputs is
given by pUðbÞ ¼ jhbjU j0ij2. An output b is said to be heavy if pUðbÞ
is above the median of the distribution pU. In an ideal device, where
this distribution would be exponential, the proportion of heavy out-
puts is ð1þ log 2Þ=2 ’ 0:85.51 At the other extreme, in a completely
depolarized device, just half of the outputs would be heavy.

In the computational approach of Ref. 49, the heavy output gen-
eration problem for an actual computer requires its native gates to pro-
duce circuits U for which the proportion of heavy outputs exceeds 2/3,
to within a desired statistical significance. Such circuits are deemed to
have achieved success. For each value of m that is feasible on the
machine, successful circuits U of depth d¼m are sought. If M is
the maximum value of m leading to success on a given machine, then
the quantum volume of that machine is defined to be 2M .

X. CONCLUSION

We have summarized contemporary ion transport and control,
qubit configuration, gate implementation, and error characterization
in ytterbium ion trap quantum computer practice. Many further opti-
mizations can occur with more precise TQ application, faster cooling,
faster ion transport, improved trap design, and more complex ion
addressal methods.
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Differing approaches to error analysis complicate comparisons
across different computational schemes. The Honeywell quantum
computer is, at the time of this review, the most complete, and despite
IonQ’s potential to scale faster, cross-talk error may become significant
as a result of its architecture.

Many alternative designs are possible, which allow scaling if con-
temporary techniques reach their limit. The use of ytterbium is not
limited to Yb–Yb TQ gates. Experiments on Yb–Ba linking via
motional coupling have been performed, suggesting the possibility for
more advanced quantum coupling with multiple ion types. Modularity
can, in theory, be achieved by using photonic coupling between ionic
computers at a low error rate, which would fit well with the illumina-
tion and detection procedures of contemporary architectures.

More complex arrangements may be expected to achieve sig-
nificant improvement. Physical systems are usually constrained to
use the simplest configurations possible to reduce engineering errors
in the final product. However, the use of ytterbium ions in quan-
tum computation provides an example of a complex, stable system
in nature, allowing for the benefits of sustained improvement with-
out the drawbacks of worrying that the electronic eigenstates could
vary. Cross-talk minimization opens the possibility that contempo-
rary computational designs might be scalable in line with the quan-
tum threshold theorem.52 The techniques that we have discussed
are competitive at the time of writing, but are certainly open to
future development.
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APPENDIX: BARIUM

Some of the use cases of barium in the Honeywell design had
significant overlap with our treatment of ytterbium. We give a brief
overview of the technical details here.

For even Baþ ions, there is no hyperfine structure. Zeeman
splitting does occur and is imposed on the ions. This corroborates
the need for a magnetic field to quantize the qubit.23

A fast scheme for the selection of 138Baþ requires that a source
of barium be heated and then illuminated by a trichroic scheme. A
791 nm laser resonant to the 6s21S0 $ 6s6p3P1 transition is used
with another laser set to either 310 or 337 nm. This is sufficient for
photoionization, but not fast. For electron repumping, a laser set to
650 nm is tuned to the 5D3=2 $ 6P1=2 transition. This repumps
electrons, which decay from 6s6p3P1 to 5D3=2, ionizing the Ba.
Doppler cooling is likewise performed as discussed in Sec. IVA 1.53

1. Doppler cooling

For Doppler pumping, as in Fig. 20, the beam is taken at
493.5 nm with no detuning. This is applied for 20ms. No data are
available for what the average motional state �n is after Doppler
cooling. Optionally, a wide linewidth beam resonant to the
2P1=2$2D3=2 transition is used to pump electrons from the metasta-
ble 2D3=2 level. The Honeywell paper reports times on the order of
10ms for the resulting cooling time. However, this is not particu-
larly worrisome, as Doppler cooling takes place before the computa-
tion is started and so does not affect the performance of the
quantum computer’s fidelity or runtime.
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